Approximate Solution of Systems of Singular Integro- Differential Equations by Reduction Method in Generalized Holder spaces
نویسندگان
چکیده
The computation schemes of reduction method for approximate solution of systems of singular integrodifferential equations have been elaborated. The equations are defined on an arbitrary smooth closed contour of complex plane. Estimates of the rate of convergence are obtained in generalized Hölder spaces. Key–Words:Reduction Method, Generalized Holder Spaces, systems of singular integro-differential equations
منابع مشابه
Approximate solution of system of nonlinear Volterra integro-differential equations by using Bernstein collocation method
This paper presents a numerical matrix method based on Bernstein polynomials (BPs) for approximate the solution of a system of m-th order nonlinear Volterra integro-differential equations under initial conditions. The approach is based on operational matrices of BPs. Using the collocation points,this approach reduces the systems of Volterra integro-differential equations associated with the giv...
متن کاملApplication of Tau Approach for Solving Integro-Differential Equations with a Weakly Singular Kernel
In this work, the convection-diffusion integro-differential equation with a weakly singular kernel is discussed. The Legendre spectral tau method is introduced for finding the unknown function. The proposed method is based on expanding the approximate solution as the elements of a shifted Legendre polynomials. We reduce the problem to a set of algebraic equations by using operational matrices....
متن کاملAn Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients
In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...
متن کاملReduction Methods for Approximate Solution of the Singular Integro-Differential Equations in Lebesgue Spaces
We have elaborated the numerical schemes of reduction method by FaberLaurent polynomials for the approximate solution of system of singular integrodifferential equations. The equations are defined on the arbitrary smooth closed contour. The theoretical foundation has been obtained in Lebesgue spaces. Key–Words: singular integrodifferential equations, reduction method, Lebesgue spaces
متن کاملExistence of solution and solving the integro-differential equations system by the multi-wavelet Petrov-Galerkin method
In this paper, we discuss about existence of solution for integro-differential system and then we solve it by using the Petrov-Galerkin method. In the Petrov-Galerkin method choosing the trial and test space is important, so we use Alpert multi-wavelet as basis functions for these spaces. Orthonormality is one of the properties of Alpert multi-wavelet which helps us to reduce computations in ...
متن کامل